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Abstract

The location of helix sites in the projected structure of
the aquaporin channel-forming integral membrane
protein from bovine red blood cells was determined by
multisolution direct methods to a mean accuracy of
�1.9 AÊ , based on hk0 electron diffraction data
extending to 6 AÊ . The structure was assumed to be
composed of pseudo-atoms, corresponding to the helix
cross sections, and after re-scaling, normalized structure
factors were used to order

P
n triples according to the A

values. Initial phases were found by symbolic addition
with algebraic unknowns. Probable solutions could be
isolated by an overall Luzzati test for density ¯atness
and restrictions on local density extremes. The best
solution was identi®ed by matching Patterson functions,
generated from the trial map density sites, to the one
calculated from observed intensities.

1. Introduction

As shown recently by the NATO Advanced Studies
Institute (Fortier, 1998), direct methods for determina-
tion of crystallographic phases is at last being taken
quite seriously in protein crystallography, despite
numerous reservations given earlier (Karle, 1989). With
new algorithms that circumvent the well known limita-
tions of traditional probabilistic methods applied to
large molecules, much of the work has concentrated on
atomic resolution data (Weeks et al., 1995). Currently, it
appears that 1000-atom proteins might be solved by such
techniques without the need for heavy-atom derivatives
or utilization of an anomalous scattering signal.

Direct methods are not limited to atomic resolution
data, however. One of the signi®cant problems in any
protein structure determination is the de®nition of the
molecular envelope, a process requiring data collected
to rather modest resolutions (Podjarny et al., 1997).
There have been cases where reasonably accurate
crystallographic phases have been found but the
resulting electron density could not be interpreted
because the boundary between protein and solvent
could not be de®ned. In X-ray crystallography,

pioneering studies of direct phase determination with
low-resolution diffraction data attempted to solve this
problem (Podjarny et al., 1981; Schevitz et al., 1981) and
this signi®cant effort is still in progress (Lunin et al.,
1995; Urzhumtzev & Podjarny, 1995). The reason why
traditional methods are useful with such data is because
most of the scattering power is in this region of reci-
procal space, hence the most probable phase invariants
should be nearly valid, even if there are fewer of them
than for a small-molecule data set (Fan et al., 1991).

One further problem that limits the application of
direct methods to low-resolution X-ray data is that a
complete set of intensities is only rarely measured. For
example, geometry of the diffraction experiment may
occlude very low angle re¯ections by a beam stop. On
the other hand, electron-diffraction patterns from thin
microcrystals almost always include all of the available
data in zones that can be accessed by tilting the
specimen (Dorset, 1995a). For this reason, there has
been some interest recently in exploring the potential of
direct methods with such intensity sets (Gilmore et al.,
1993, 1996; Dorset et al., 1995; Dorset, 1995b, 1996,
1997a), even though electron microscopy is acknowl-
edged to be a powerful source of crystallographic phases
not available to the X-ray crystallographer.

Initial applications of direct methods, initially
maximum entropy and likelihood (Gilmore et al., 1993),
but later convolutional techniques (Dorset et al., 1995)
considered the accuracy of phase extension from a very
low resolution phase set (e.g. derived from the Fourier
transform of an averaged electron micrograph) to the
limit of an electron-diffraction pattern. Useful results
were reported for a variety of proteins. Later the
concept of ab initio phase determination was considered,
®rst assuming (somewhat incorrectly) that density ¯at-
ness would be a rigorous ®gure of merit (Dorset, 1995b,
1996), but later relying on likelihood predictions
(Gilmore et al., 1996). The old concept of pseudo-atom
`globs' (Harker, 1953) as a model for the protein mass
distribution was also considered. For proteins with
density distributions (e.g. projections of helices) that
could be treated as pseudo-atomic scatterers, there was
shown to be an improved prospect for direct phase



determination, say to 6 AÊ resolution (Dorset, 1997a,b).
However, for the three examples considered success-
fully, i.e. halorhodopsin, and two trigonal forms of
bacteriorhodopsin, it could be said that the same
structural motif was being considered repeatedly.
Indeed, recently, the orthorhombic bacteriorhodopsin
structure has also been analyzed successfully (Dorset,
1998).

To extend the direct approach to a completely
different helical array, the ab initio phase analysis of the
red blood cell aquaporin channel-forming integral
membrane protein (AQP-CHIP) was attempted. The
results are described in this communication.

2. Materials and methods

2.1. Crystallization and electron diffraction

The puri®cation of bovine red blood cell AQP-CHIP
and its reconstitution in dimyristoyl phosphatidylcholine
bilayers has been described in detail in an earlier
publication (Jap & Li, 1995). Electron diffraction
patterns from untilted crystals extend to about 3.0 AÊ

from preparations embedded in vitreous ice. The two-
dimensional unit-cell constants are a square lattice with
a = b = 96.4 (2) AÊ in the centrosymmetric plane group
p4mg, a projection of the P4212 space-group symmetry
along [001]. Strongest re¯ections from 16 averaged
diffraction patterns were observed to about 10 AÊ reso-
lution or lower, even though the diffraction resolution
extended to 3 AÊ . The phase determination described in
this paper used all 106 re¯ections to the 6 AÊ limit, thus
excluding those in the 6±3 AÊ range. With the phases
provided from averaged low-dose electron micrographs
the projected potential map at 6 AÊ resolution is depicted
in Fig. 1.

2.2. Intensity normalization

In earlier studies of proteins composed mostly of �-
helices (Dorset, 1997a,b), it was assumed that the
dimensionality of the structure analysis could be
reduced by a factor of 10. For example, the typical
center-to-center distance for two helical cylinders is
about 10±15 AÊ (Tatarinova & Vainshtein, 1962; Parsons
& Martius, 1964), compared with the 1.54 AÊ length of a
CÐC single bond. If the helix pro®le were regarded as a
Gaussian glob, then its Fourier transform, or scattering
factor, might be well modeled by a carbon scattering
factor (that has really more of a Lorentzian shape) if the
unit cell were reduced to a = b = 9.64 AÊ . In simulations
for halorhodopsin and bacteriorhodopsin, this was not a
bad approximation (Dorset, 1997a,b, 1998).

Using the carbon electron scattering factor (Doyle &
Turner, 1968) to model all projected helix transforms, a
Wilson (1942) plot indicated that B = ÿ3.5 AÊ 2. [Note,
however, that this temperature factor is meaningless in
its traditional sense. Here it is only used to optimize the

®t of an approximate scattering factor envelope to the
observed scattering fall-off. There is also nothing espe-
cially signi®cant about the choice of scattering factor,
except that it should be approximately Gaussian and
convenient to model. Tests of other Gaussian or
Lorentzian functions, also explored in earlier work
(Dorset, 1997b), could marginally improve the R factor
to the experimental structure-factor amplitudes but did
not appreciably in¯uence the accuracy of the phase
model. This procedure, therefore, appears to be the best
one for normalization of intensities when the glob
approximation is made. See below for more discussion.]
Normalized structure factors jEhj (Hauptman, 1972)
were then calculated from Iobs for 106 unique data. To
evaluate the glob model, a structure-factor calculation
was carried out, based on helix positions identi®ed from
Fig. 1. With the carbon scattering factor model, the
calculated phases in a structure-factor calculation
deviated from the image-derived phases by a mean
value of 49�, with R = 0.63 when B = 0.0 AÊ 2 was used.
However, for the 25 most intense re¯ections, the mean
phase deviation was only 14.4�. Hence, the model is
better for predicting phases than amplitudes, an obser-
vation consistent with earlier glob simulations of
rhodopsins (Dorset, 1997a,b).

2.3. Phase determination

Note (Fig. 1) that the unit-cell origin, adapted from
the image analysis of Jap & Li (1995), is speci®ed on the
twofold axis of the plane group rather than the fourfold
speci®ed for the plane group. This implies the symmetry
and origin de®nition for the actual space group P4212
[also assumed in the earlier direct phase determination
of halorhodopsin (Dorset, 1995b, 1997a)]. From simple

Fig. 1. Potential map for AQP-CHIP at 6 AÊ , calculated from electron
diffraction jFhj and image-derived 'h (Jap & Li, 1995).
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trigonometric considerations, starting from the
symmetry-reduced structure-factor expression, it can be
shown that an effective origin-shift by (x + 1

2) does not
affect the phases of invariant re¯ections with indices gg0
or uu0 but will change the phases of those with index ug0
or gu0, the origin-sensitive re¯ections. A closely analo-
gous situation of an origin shift from a fourfold to a
twofold axis is treated formally by Hauptman (1972).

For the phase determination, it was assumed that
there were seven `atoms' in the asymmetric unit. From
the 106 calculated jEhj values 859

P
2 triple invariants

were calculated to Amin � �2=N1=2�jEh1
Eh2

Eh3
j � 0:5, as

well as a small number of
P

1 invariants. A convergence
procedure (Germain et al., 1970) established that, if
'580 � 0 de®ned the origin, then 85 phases could be
accessed if (150) and (670) re¯ections were also
assigned algebraic phase values. Symbolic addition

(Karle & Karle, 1966) was employed for all phase
determinations.

3. Results

Initially, it was found that the value '10;0;0 � 0 also could
be predicted accurately from a highly probable

P
1

invariant. With the total basis set of four re¯ections, 21
clustered

P
2-triple relationships, each contributing to a

new phase term, were taken in the sequence established
by the convergence procedure. However, unlike most
small-molecule determinations, where an average is
made over all contributors, weighted according to a
®gure of merit �est (DeTitta et al., 1975), only the ®rst
triple in the sequence (i.e. the most probable) was
accepted for the phase assignment. During this deter-
mination the algebraic values, '150 � a; '670 � b were

Fig. 2. Direct phasing and re®nement of AQP-CHIP via convergence procedure. (a) Initial potential map; (b) map after ®rst Fourier re®nement
cycle; (c) map after second Fourier re®nement cycle.
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Fig. 3. Direct phasing of AQP-CHIP via multisolution procedure
within symbolic addition. (a) Solution at a = 0, b = �, c = 0, d = �; (b)
solution at a = b = c = �, d = 0; (c) Patterson map from peaks in (b),
correlation coef®cient C = 0.86 (see text); (d) Patterson map from
peaks in (b), correlation coef®cient C = 0.64 (see text); (e) Iobs

Patterson map.
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found to have the values 0 and �, respectively. In the list
of 25 phases, obtained by direct methods, there were
seven errors.

A potential map, calculated from these 25 phase
terms (i.e. combined with the corresponding |Fobs|
amplitudes), is shown in Fig. 2(a). Some interpretation
could be made, despite the fact that protein structures at
this resolution have no conservative `bonding pattern' of
subunits expected for molecular crystals. For example,
the large peak at the unit-cell origin, the twofold axis, is
highly unlikely (Podjarny et al., 1981) and can be
rejected. Six likely peak locations were chosen from the
other major density sites on the map and these were
then used to calculate a ®rst complete phase set (struc-
ture factors with pseudo-atom model). In the second
map (Fig. 2b), the central peak is weakened and the
chosen sites reinforced. At least two other density sites
could be chosen as another helix positions in the
asymmetric unit. However, it was assumed that actual
protein density would not lie directly on a (projected)
mirror plane so all peaks on this plane were also
rejected. When seven helix sites are chosen for a struc-
ture-factor calculation, the peaks were reinforced in the
ensuing map (Fig. 2c). From this model, the mean phase
error for the top 25 re¯ections (to 6 AÊ resolution) was
50.4�.

If the strict analogy to small-molecule crystallography
were to apply, the approach used above to arrive at an
arrangement of helical sites can be viewed almost as an a
posteriori contrivance, even though the result is some-
what like the true protein structure. Without knowing
the structure beforehand, there is no real reason to
select only the ®rst triple contributor to any phase in the
convergence list.

In an alternative, more objective, approach, if only the
ten

P
2 triples with highest A values were evaluated with

six basis set phases, '10;0;0 � 0�P1�; '580 � 0 (origin);
'150 � a; '670 � b; '350 � c; '550 � d, then 15 phases
could be found containing only two errors (with the
correct values for the algebraic unknowns). Permutation
of the unknowns gave 24 = 16 solutions, from which an
optimal set had to be chosen. Earlier, the Luzzati test for
density ¯atness (Luzzati et al., 1986) in the corre-
sponding potential maps, i.e. h��4i is a minimum when
�� � 0, was shown not to be a rigorous criterion for
choosing the best solution (Dorset, 1996). Nevertheless,

this FOM was employed to select a few most likely
solutions. Within this subset, we were also looking for a
solution that had the most `atomistic' character so the
two solutions with the greatest range of �max versus �min

were chosen as likely candidates. For all 16 possible
solutions, h��4i encompasses values from 0.3048 to
0.6064. (These values are not absolute ones, however,
since the |Fobs| are only relative.) Within the solutions
where h��4i � 0:40, assumed to be the most favorable
case, the value of ��max ÿ �min� lies between 0.37 and
0.49; two solutions with the latter value being tested. The
corresponding potential maps are depicted in Figs. 3(a)
and 3(b). From the peak positions (again ignoring those
appearing on rotation axes or projected mirror planes),
Patterson functions were calculated as depicted in Figs.
3(c) and 3(d). While neither Patterson map perfectly
matched the one calculated from the complete set of Iobs

(Fig. 3e), only the solution 0,�,0,� gave a satisfactory
match to numerous peak positions. A linear correlation
coef®cient, calculated from C �Ph momc=P

h jmojjmcj, where mo � jFoj2 ÿ hjFoj2i and mc �
jFcj2 ÿ hjFcj2i was also effective for selecting the
correct solution. (Only the values for the 25 most
intense observed re¯ections were compared in this
calculation.) This FOM is slightly different to the one
given by Drenth (1994). Again ignoring peaks on
mirrors or rotation axes, seven positions could be
found that corresponded closely to the helix sites
identi®ed by Jap & Li (1995) (Fig. 3a). After three
cycles of Fourier re®nement, these sites were reinforced
(Fig. 4), and a model could be proposed for helix loca-
tions that were, on average, only 1.9 AÊ away from the
model based on image phases (Table 1). For the top 25
re¯ections the mean phase difference was only 29�

(Table 2).

Fig. 4. Solution in Fig. 3(a) after three cycles of Fourier re®nement.

Table 1. Final helical centers for AQP-CHIP

Direct methods and re®nement Jap & Li (1995)
x/a y/b x/a y/b

0.272 ÿ0.172 0.280 ÿ0.175
0.357 ÿ0.095 0.374 ÿ0.076
0.413 ÿ0.016 0.413 0.000
0.337 0.043 0.358 0.068
0.233 0.077 0.222 0.085
0.193 0.038 0.191 0.007
0.226 ÿ0.108 0.228 ÿ0.119
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4. Discussion

As discussed in a recent paper (Dorset, 1997b) where
similar techniques were used to determine the structures
of two bacteriorhodopsin crystal forms, the approxima-
tion of projected globular density by a pseudoatom
model is more successful in some cases than in others.
Other phenomenological scattering-factor models
(Dorset, 1997b), e.g. pure Gaussian or Lorentzian
functions, could produce a better ®t to the intensity
transform, even if the phase accuracy was not so much
affected by the exact form of the scattering model. In a
test of various models at idealized helix sites, it was
found that the Gaussian function, exp(ÿ2.5 s2), was
better than the carbon scattering factor used above (R =
0.54). The overall phase accuracy was only 44�, not
greatly different from the 49� value obtained before.
Choice of a slightly better phenomenological scattering
factor, however, does not necessarily improve the direct
phase determination. If the Gaussian scattering factor
was used to calculate jEhj and these used to order

P
2

triples according to the decreasing order of A values,
then the the phase determination was degraded by ®ve
errors in the ten top triples (instead of just two,
following the procedure given above), including that
with the highest A value. Using the convergence routine
(Germain et al., 1970) to order the sequence of phases to
be picked up by direct methods, as before, 16 phase
values contained six errors but the resulting potential
map was, in fact, not quite so easily interpreted as the
ones shown above, even though density is found to lie

near the optimal helix positions. A Fourier re®nement
was not attempted from this starting point.

We found, therefore, that the most accurate deter-
mination utilized the carbon electron scattering factor as
the model for the globular Fourier transform. For
example, the mean value of the

P
2 invariants with the

ten largest A values was 36 � 76� (where 0� is
predicted), an accuracy similar to the one found for a p3
form of bacteriorhodopsin (Dorset, 1997b). Thus, even
though variations of the structure-factor model may
have little effect on simulating the protein phases in a
structure-factor calculation, these variations can affect
the normalization of intensities for ranking of phase
invariants.

Could the unknown aquaporin structure have been
solved directly from the observed 6 AÊ resolution
diffraction data? Obviously, the solution would not have
been found as easily as in the earlier determinations of
the two centrosymmetric rhodopsin projections (Dorset,
1997a, 1998). In these earlier studies, where the
projected helix densities were nearly isotropic, a strict
analogy to small-molecule determinations was observed,
after the data were normalized by pseudo-atom scat-
tering factors.

From the recently published three-dimensional
structure of AQP-CHIP (Li et al., 1997), it is evident that
tilt of at least half of the �-helices in the molecule
account for the strongly elliptical shapes of the peaks in
Fig. 1. Comparing the results of Fig. 4 to the map in Fig. 1
(also see Table 1), an anisotropic density distribution
will not be found by direct methods when an isotropic
model is used for the phenomenological scattering
factor. Nevertheless, even though the anisotropy of
globular density affects the accuracy of the phase
invariants when an isotropic scattering envelope is
assumed, a multisolution approach can still ®nd a phase
set for the most intense re¯ections that is reasonably
accurate. Again the top ten

P
2 invariants contain only

two false estimates. The Harker (1953) pseudo-atom
approach to determining the structures of appropriate
membrane protein projections has considerable merit,
therefore, even for such examples. The remaining
problem in the direct analysis is ®nding an optimal ®gure
of merit to select the best solution among many, as
experienced earlier in the analysis of noncentrosym-
metric data sets (Dorset, 1997b). If this problem could
be solved decisively, then the answer to the above
question would be af®rmative.

We are only at a threshold of understanding how to
®nd a correct structure from a multisolution set when
data are limited to low resolution. Obviously, the same
constraints used in interpretation of trial potential maps
in small-molecule crystallography cannot be made in
protein applications. There is no conservative entity to
helix (or other globular density) interaction analogous
to the well known bonding constraints of covalent
molecules so that the chemical knowledge actually used

Table 2. Re®ned phase values or aquaporin after direct
determination compared with values determined from the

Fourier transform of electron micrographs

h k 0 |Fobs| ' (direct methods) ' (image transform)

0 6 0 55.63 � �
0 10 0 40.65 � 0
1 5 0 99.63 0 0
1 6 0 52.73 � �
2 5 0 45.48 0 0

2 11 0 38.33 � �
3 4 0 72.18 0 0
3 5 0 70.23 0 0
3 6 0 40.90 0 0
3 9 0 57.94 0 �
4 4 0 47.09 � �
4 5 0 40.49 � �
4 6 0 37.65 0 0
4 8 0 36.08 � �

4 10 0 46.23 0 0
5 5 0 38.30 � �
5 7 0 77.99 0 0
5 8 0 77.93 0 0

5 10 0 40.01 0 �
6 6 6 43.63 � �
6 7 0 68.43 � �
6 8 0 62.39 � �
7 7 0 64.58 0 0
8 9 0 35.65 0 �
9 9 0 51.55 0 0

620 AQUAPORIN CHANNEL-FORMING INTEGRAL MEMBRANE PROTEIN



to solve many small molecules by direct methods does
not apply. Nevertheless, there are other criteria that
might be effective. If the structure of analogous proteins
is known, histogram matching (Zhang & Main, 1990)
might be useful although it has not been considered so
far in our work. This option is mentioned since glob-
generation in real space has referred to this FOM for
accepting possible solutions (Lunin et al., 1990).
Maximum likelihood (Bricogne & Gilmore, 1990) is
another constraint to consider, e.g. already shown by
Gilmore & Nicholson (1997) to be effective for produ-
cing a reasonable replica of this structure at 10 AÊ

resolution. In keeping with the atomistic idea, we have
preferred to impose the reasonable restrictions that
density cannot occur or dyad axes or on projected
symmetry planes (Podjarny et al., 1981), due to the chiral
nature of the protein itself. In addition, the matching of
observed asnd calculated Patterson functions, also
employed in earlier work (Dorset, 1997b), may be an
effective constraint for selecting among a small range of
possible initial phase choices, especially when correla-
tion coef®cients are calculated.

Given the success of real-space `glob' models for
solving two-dimensional protein crystal structures at low
resolution (Podjarny et al., 1997), it would be interesting
to evaluate, in future studies, if these reciprocal-space
methods can be extended to three dimensions. Also,
suitable methods for re®ning the initial structures found
by this approximation must be be determined in future
work.
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fully acknowledged.

References

Bricogne, G. & Gilmore, C. J. (1990). Acta Cryst. A46, 284±297.
DeTitta, G. T., Edmonds, J. W., Langs, D. A. & Hauptman, H.

(1975). Acta Cryst. A31, 472±479.
Dorset, D. L. (1995a). Structural Electron Crystallography.

New York: Plenum Press.
Dorset, D. L. (1995b). Proc. Natl Acad. Sci. USA, 92, 10074±

10078.
Dorset, D. L. (1996). Acta Cryst. A52, 480±489.
Dorset, D. L. (1997a). Proc. Natl Acad. Sci. USA, 94, 1791±

1794.
Dorset, D. L. (1997b). Acta Cryst. A53, 445±455.

Dorset, D. L. (1998). Acta Cryst. A54. In the press.
Dorset, D. L., Kopp, S., Fryer, J. R. & Tivol, W. F. (1995).

Ultramicroscopy, 57, 59±89.
Doyle, P. A. & Turner, P. S. (1968). Acta Cryst. 24, 390±397.
Drenth, J. (1994). Principles of Protein X-ray Crystallography,

p. 229. New York: Springer-Verlag.
Fan, H. F., Hao, Q. & Woolfson, M. M. (1991). Z. Kristallogr.

197, 196±208.
Fortier, S. (1998). Editor. Direct Methods for Solving Macro-

molecular Structures. Dordrecht: Kluwer Academic
Publishers.

Germain, G., Main, P. & Woolfson, M. M. (1970). Acta Cryst.
B26, 274±285.

Gilmore, C. J. & Nicholson, W. V. (1997). Direct Methods for
Solving Macromolecular Structures, edited by S. Fortier,
Dordrecht: Kluwer Academic Publishers.

Gilmore, C. J., Nicholson, W. V. & Dorset, D. L. (1996). Acta
Cryst. A52, 937±946.

Gilmore, C. J., Shankland, K & Fryer, J. R. (1993).
Ultramicroscopy, 49, 132±146.

Harker, D. (1953). Acta Cryst. 6, 731±736.
Hauptman, H. A. (1972). Crystal Structure Determination. The

Role of the Cosine Seminvariants. New York: Plenum Press.
Jap, B. K. & Li, H. L. (1995). J. Mol. Biol. 251, 413±420.
Karle, J. (1989). Acta Cryst. A45, 765±781.
Karle, J. & Karle, I. L. (1966). Acta Cryst. 21, 849±859.
Li, H, L., Lee, S. & Jap, B. K. (1997). Nature Struct. Biol. 4, 263±

265.
Lunin, V. Yu., Lunina, N. L., Petrova, T. E., Vernosolva, E. A.,

Urzhumtsev, A. G. & Podjarny, A. D. (1995). Acta Cryst.
D51, 896±903.

Lunin, V. Yu., Urzhumtzev, A. G. & Skovoroda, T. P. (1990).
Acta Cryst. A46, 540±544.

Luzzati, V., Mariani, P. & Delacroix, H. (1986). Makromol.
Chem. Macromol. Symp. 15, 1±17.

Parsons, D. F. & Martius, U. (1964). J. Mol. Biol. 10, 530±533.
Podjarny, A. D., Schevitz, R. W. & Sigler, P. B. (1981). Acta

Cryst. A37, 662-668.
Podjarny, A., Urzhumtsev, A. & Lunin, V. (1997). Direct

Methods for Solving Macromolecular Structures, edited by S.
Fortier. Dordrecht: Kluwer Academic Publishers.

Schevitz, R. W., Podjarny, A. D., Zwick, M., Hughes, J. J. &
Sigler, P. B. (1981). Acta Cryst. A37, 669±677.

Tatarinova, L. I. & Vainshtein, B. K. (1962). Vysokomolek.
Soed. 4, 261±269.

Urzhumtsev, A. & Podjarny, A. (1995). Acta Cryst. D51, 888±
895.

Weeks, C. M., Hauptman, H. A., Smith, G. D., Blessing, R.
H., Teeter, M. M. & Miller, R. (1995). Acta Cryst. D51,
33±38.

Wilson, A. J. C. (1942). Nature (London), 150, 151±152.
Zhang, K. Y. J. & Main, P. (1990). Acta Cryst. A46, 41±46.

DOUGLAS L. DORSET AND BING K. JAP 621


